هیدروژن

تعرفه تبلیغات در سایت
عنوان عکس عنوان عکس عنوان عکس عنوان عکس
عنوان عکس عنوان عکس عنوان عکس عنوان عکس
عنوان عکس عنوان عکس عنوان عکس عنوان عکس
عنوان عکس عنوان عکس عنوان عکس عنوان عکس
عنوان عکس عنوان عکس عنوان عکس عنوان عکس

جستجوگر

یافته ها در جستجو

    امکانات وب

    Yahoo Messenger Icons

    گفتگوی آنلاین با علیرضا فرزادنیا

    برچسب ها

    هیدروژن

    هیدروژن با نماد شیمیایی H نام یک عنصر شیمیایی در جدول تناوبی با عدد اتمی ۱ است. وزن اتمی این عنصر ۱٫۰۰۷۹۴ u است. هیدروژن سبک‌ترین عنصر در جهان است و بیش از دیگر عنصرها می‌توان آن را به صورت آزاد در طبیعت پیدا کرد. می‌توان گفت نزدیک به ۷۵% از جرم جهان از هیدروژن ساخته شده‌است. برخی جرم‌های آسمانی مانند کوتولهٔ سفید و یا ستاره‌های نوترونی از حالت پلاسمای هیدروژن ساخته شده‌اند. ولی در طبیعت روی زمین به سختی می‌توان تک اتم هیدروژن را پیدا کرد.

    اطلاعات کاربردی:

    ویژگی‌های کلی
    نامنمادعددهیدروژن, H, ۱
    تلفظ بهانگلیسی/ˈhdrɵɨn/ HYE-dro-jin
    نام گروهی برای عناصر مشابهنافلزات
    گروه، تناوب،بلوک۱۱s
    جرم اتمی استاندارد۱٫۰۰۷۹۴ g·mol−۱
    آرایش الکترونی1s۱
    الکترون به لایه۱ 
    ویژگی‌های فیزیکی
    رنگبی رنگ
    حالتگاز
    چگالی(0 °C, 101.325 kPa)
    ۰٫۰۸۹۸۸ g/L
    چگالی مایع درm.p.۰٫۰۷ (۰٫۰۷۶۳ جامد)[۲] g·cm−۳
    چگالی مایع درb.p.۰٫۰۷۰۹۹ g·cm−۳
    نقطه ذوب۱۴٫۰۱ K, -۲۵۹٫۱۴ °C, -۴۳۴٫۴۵ °F
    نقطه جوش۲۰٫۲۸ K, -۲۵۲٫۸۷ °C, -۴۲۳٫۱۷ °F
    نقطه سه‌گانه13.8033 K (-259°C), ۷٫۰۴۲ kPa
    نقطه بحرانی۳۲٫۹۷ K, ۱٫۲۹۳ MPa
    گرمای هم‌جوشی(H۲) ۰٫۱۱۷ kJ·mol−1
    گرمای تبخیر(H۲) ۰٫۹۰۴ kJ·mol−1
    ظرفیت گرمایی(H۲) ۲۸٫۸۳۶ J·mol−۱·K−۱
    فشار بخار
    فشار (پاسکال)۱۱۰۱۰۰۱k۱۰k۱۰۰k
    دما (کلوین)۱۵۲۰
    ویژگی‌های اتمی
    وضعیت اکسید شدن۱, -۱
    (آمفوتر)
    الکترونگاتیوی۲٫۲۰ (مقیاس پاولینگ)
    شعاع کووالانسی۳۱±۵ pm
    شعاع واندروالانسی۱۲۰ pm
    متفرقه
    ساختار کریستالیدستگاه بلوری شش گوشه
    مغناطیسدیامغناطیس
    رسانایی گرمایی(300 K) ۰٫۱۸۰۵ W·m−1·K−1
    سرعت صوت(gas, 27 °C) ۱۳۱۰ m/s
    عدد کاس۱۳۳۳-۷۴-۰
    پایدارترین ایزوتوپ‌ها
    مقاله اصلی ایزوتوپ‌های هیدروژن
    isoNAنیمه عمرDMDE (MeV)DP
    ۱H٪۹۹٫۹۸۵۱H ایزوتوپ پایدار است که ۰ نوترونداردs
    ۲H٪۰٫۰۱۵۲H ایزوتوپ پایدار است که ۱ نوترون دارد
    ۳Htrace۱۲٫۳۲ yβ۰٫۰۱۸۶۱۳He



    ایزوتوپی از هیدروژن که بیشتر دیده می‌شود، پروتیوم نام دارد (بیشتر از نماد آن ۱H یاد می‌شود تا نام آن) این ایزوتوپ، یک پروتون دارد و نوترون ندارد و در ترکیب‌های یونی می‌تواند بار منفی (آنیون هیدرید با نماد -H) به خود بگیرد. همچنین بار مثبت آن نیز به صورت +H یافت می‌شود که در این صورت تنها از یک پروتون ساده ساخته شده‌است. البته در حقیقت بدست آوردن کاتیون هیدروژن در ترکیب‌های پیچیده تری ممکن می‌شود.


    اطلاعات کامل در ادامه مطلب

    هیدروژن
    هیدروژن با نماد شیمیایی H نام یک عنصر شیمیایی در جدول تناوبی با عدد اتمی ۱ است. وزن اتمی این عنصر ۱٫۰۰۷۹۴ u است. هیدروژن سبک‌ترین عنصر در جهان است و بیش از دیگر عنصرها می‌توان آن را به صورت آزاد در طبیعت پیدا کرد. می‌توان گفت نزدیک به ۷۵% از جرم جهان از هیدروژن ساخته شده‌است. برخی جرم‌های آسمانی مانند کوتولهٔ سفید و یا ستاره‌های نوترونی از حالت پلاسمای هیدروژن ساخته شده‌اند. ولی در طبیعت روی زمین به سختی می‌توان تک اتم هیدروژن را پیدا کرد.
    ایزوتوپی از هیدروژن که بیشتر دیده می‌شود، پروتیوم نام دارد (بیشتر از نماد آن ۱H یاد می‌شود تا نام آن) این ایزوتوپ، یک پروتون دارد و نوترون ندارد و در ترکیب‌های یونی می‌تواند بار منفی (آنیون هیدرید با نماد -H) به خود بگیرد. همچنین بار مثبت آن نیز به صورت +H یافت می‌شود که در این صورت تنها از یک پروتون ساده ساخته شده‌است. البته در حقیقت بدست آوردن کاتیون هیدروژن در ترکیب‌های پیچیده تری ممکن می‌شود.
    عنصر هیدروژن با بیشتر عنصرها می‌تواند ترکیب شود و می‌توان آن را در آب، تمامی ترکیب‌های آلی و موجودات زنده پیدا کرد. این عنصر در واکنش‌های اسید و قلیایی در بسیاری واکنش‌ها با داد و ستد پروتون میان مادهٔ حل شدنی و حلال نقش مهمی از خود نشان می‌دهد. هیدروژن به عنوان ساده ترین عنصر شناخته شده در دانش نظری بسیار کمک کار بوده‌است، برای نمونه از آن در حل معادلهٔ شرودینگر و یا در مطالعهٔ انرژی و پیوند و در نهایت پیشرفت دانش مکانیک کوانتوم نقش کلیدی داشته‌است.
    گاز هیدروژن (با نماد H۲) نخستین بار در سدهٔ ۱۶ میلادی به صورت آزمایشگاهی از واکنش اسیدهای قوی با فلزهایی مانند روی بدست آمد (۱۷۶۶ تا ۸۱). هنری کاوندیش نخستین کسی بود که دریافت گاز هیدروژن برای خود، یک مادهٔ جداگانه‌است. و از سوختن آن آب پدید می‌آید. دلیل نامگذاری هیدروژن هم همین ویژگی آن است به معنی آبساز در زبان یونانی. در شرایط استاندارد دما و فشار هیدروژن عنصری است بی رنگ، بی بو، بی مزه، نافلز، غیرسمّی یک ظرفیتی، گازی دو اتمی، بسیار آتشگیر و با فرمول شیمیایی H۲.
    در صنعت برای تولید هیدروژن از گاز طبیعی بهره می‌برند و کمتر به الکترولیز آب روی می‌آورند. بیشتر هیدروژن تولیدی در نزدیکی محل تولید، در فرایند سوخت سنگواره‌ای (مانند کراکینگ) و تولید آمونیاک برای ساخت کود شیمیایی، مورد بهره برداری قرار می‌گیرد. امروزه دانشمندان در تلاش اند تا جلبک‌های سبز را در تولید هیدروژن بکار ببندند.
    در دانش فلزشناسی، تردی هیدروژنی بسیاری فلزها مورد بررسی استتا با کمک آن در طراحی لوله‌ها و مخزن‌ها دگرگونی‌هایی پدید آورند
    ویژگی‌ها
    سوختن
    گاز هیدروژن (دی‌هیدروژن یا مولکول هیدروژن) بسیار آتشگیر است و می‌تواند در هوا و در بازهٔ گسترده‌ای از غلظت، میان ۴٪ تا ۷۵٪ حجمی، بسوزد. آنتالپی استاندارد سوختن برای هیدروژن ۲۸۶ کیلوژول بر مول است:
    2 H۲(g) + O۲(g) → 2 H۲O(l) + ۵۷۲ kJ (۲۸۶ kJ/mol)
    اگر هیدروژن با هوا آمیخته شود و غلظت آن میان ۴ تا ۷۴ درصد باشد و یا آمیزه‌ای از هیدروژن و کلر با درصد ۵ تا ۹۵ درصد می‌تواند ماده‌ای انفجاری را پدید آورد. این آمیزه‌های گازی با یک جرقه، کمی گرما یا نور خورشید بی درنگ منفجر می‌شود. دمای خودآتشگیری هیدروژن، دمایی که هیدروژن در آن خود به خود در هوا آتش می‌گیرد، ۵۰۰ درجهٔ سانتیگراد یا ۹۳۲ فارنهایت است از شعلهٔ سوختن هیدروژن-اکسیژن خالص پرتوهای فرابنفش تابیده می‌شود که برای چشم ناپیدایند. مانند شعله‌ای که در موتور اصلی شاتل فضایی در اثر سوختن هیدروژن-اکسیژن پدید می آید. برای ردیابی نشتی در هیدروژن در حال سوختن نیاز به ابزارهای ردیابی شعله داریم، چنین نشتی‌هایی می‌توانند بسیار خطرناک باشند. فاجعهٔ آتشگیری فضاپیمای هیندنبرگ یک نمونهٔ ننگین از سوختن هیدروژن است دلیل این آتش‌سوزی مورد بررسی است اما شعله و آتشی که از بیرون دیده شد به دلیل سوختن دیگر مواد روی این فضاپیما بود. چون هیدروژن سبک است و در هوا شناور می‌شود شعلهٔ آتش هیدروژن خیلی زود بالا رفت و نسبت به سوخت‌های هیدروکربنی خرابی کمتری به بار آورد. دو-سوم سرنشینان این فضاپیما از آتش سوزی جان سالم به در بردند. بیشتر کشته‌ها به دلیل سقوط و یا آتشگیری سوخت دیزل بود.
    H۲ می‌تواند با هر عنصر اکسید شده‌ای وارد واکنش شود همچنین می‌تواند در دمای اتاق به صورت خود به خودی و البته خطرآفرین با کلر و فلوئور واکنش دهد و هالیدهای هیدروژن، هیدروژن کلرید و هیدروژن فلوئورید را پدید آورد. این هالیدها خود اسیدهای خطرناکی اند.
    تراز انرژی الکترونی
    تراز انرژی الکترون در اتم هیدروژن در پایین ترین سطح خود یا حالت صفر، ۱۳٫۶- الکترون‌ولت است. که برابر است با یک فوتون فرابنفش با طول موجی نزدیک به ۹۲ نانومتر.
    تراز انرژی هیدروژن را می‌توان با کمک مدل اتمی بور، نزدیک به دقیق بدست آورد. در مدل بور فرض بر این است که الکترون‌ها در اتم مانند زمین که به گِرد خورشید می‌گردد، به گِرد پروتون (هستهٔ اتم) می‌چرخند. البته نیروی الکترومغناطیسی میان الکترون‌ها و پروتون‌ها ربایش پدید می‌آورد مانند سیاره‌ها که به خاطر نیروی گرانش سوی ستاره‌ها رباییده می‌شوند. در دوران آغازین مکانیک کوانتوم، چنین انگار شده بود که تکانهٔ زاویه‌ای کمیتی گسسته‌است درنتیجه الکترون در مدل بور اجازه داشت در فاصله‌های مشخصی از پروتون جای گیرد و درنتیجه انرژی آن هم با مقدارهای مشخصی برابر می‌شد.
    برای دریافت توضیح دقیق تری دربارهٔ اتم هیدروژن باید به رفتار آن در مکانیک کوانتوم نگاه کرد. با توجه به معادلهٔ شرودینگر و فرمول انتگرالی فاینمن می‌توان رفتار احتمالاتی الکترون به گِرد پروتون را محاسبه کرد. برپایهٔ مکانیک کوانتوم، الکترون در یک اتم هیدروژن در حالت تراز صفر، هیچگونه تکانهٔ زاویه‌ای ندارد، تفاوت میان همانندسازی گردش الکترون‌ها به منظومهٔ خورشیدی و آنچه در عمل رخ می‌دهد اینجا است.
    ساختار مولکولی
    دو اسپین متفاوت برای همپارهای مولکول دو اتمی هیدروژن وجود دارد که در آن، تفاوت در اسپین هسته‌ها نسبت به یکدیگر است.[۲۰] در ساختار راست‌هیدروژن (اورتوهیدروژن) اسپین دو پروتون هم‌سو است و با عدد کوانتومی اسپین مولکول ۱ (½+½) یک حالت سه گانه می‌سازد. در پاراهیدروژن اسپین‌ها ناهم‌سو است درنتیجه با عدد کوانتومی اسپین ۰ (½–½) یک یگانه را می‌سازد. در دما و فشار استاندارد، ساختار ۲۵٪ از گاز هیدروژن به صورت پارا و ۷۵٪ آن به صورت راست یا اورتو است که به آن «ساختار معمولی» هم گفته می‌شود. نسبت تعادلی هیدروژن پارا به راست (اورتو) به دمای آن بستگی دارد اما چون ساختار راست یک حالت برانگیخته است و تراز انرژی بالاتری نسبت به پارا دارد، ناپایدار است و نمی توان آن را پالایید. در دمای بسیار پایین می توان گفت حالت تعادل تنها از پارا ساخته شده‌است. ویژگی‌های گرمایی پاراهیدروژن پالاییده در حالت‌های گازی و مایع، با ساختار معمولی بسیار متفاوت است و این از آنجا است که ظرفیت گرمایی گردشی آن‌ها متفاوت است. (نگاه کنید به اسپین همپارهای هیدروژن) تفاوت‌های پارا و راست در مولکول‌های دیگری که هیدروژن دارند و یا در گروه‌های عاملی نیز دیده می‌شود. برای نمونه آب و متیلن چنین اند اما این تفاوت در ویژگی‌های گرمایی آن‌ها بسیار ناچیز است. برای نمونه نقطهٔ ذوب و جوش پاراهیدروژن ۰٫۱ کلوین از هیدروژن راست (اورتو) پایین تر است.
    با افزایش دما، تغییر ویژگی‌های هیدروژن از پارا به راست (اورتو) افزایش می‌یابد و پس از اندکی H۲ فشرده سرشار از ساختار پُرانرژی اورتو می‌شود، ساختاری که با کندی بسیار به ساختار پارا باز می‌گردد. نسبت اورتو/پارا در هیدروژن فشرده، نکتهٔ کلیدی در آماده‌سازی و ذخیرهٔ هیدروژن مایع است که باید آن را در نظر داشت. فرایند دگرگونی هیدروژن از راست (اورتو) به پارا گرمازا است و آنقدر گرما تولید می‌کند که باعث بخار شدن بخشی از هیدروژن مایع شود. در این فرایند از آسان‌گرهایی مانند زغال فعال، اکسید آهن(III)، آزبست پلاتینی، برخی فلزهای کمیاب، ترکیب‌های اورانیوم، اکسید کروم(III) و برخی ترکیب‌های نیکل کمک گرفته می‌شود. این آسان‌گرها هنگام خنک سازی هیدروژن افزوده می‌شوند.
    حالت‌های گوناگون
    هیدروژن فشرده
    هیدروژن مایع
    هیدروژن دوغاب
    هیدروژن جامد
    هیدروژن فلزی
    ترکیب‌ها
    کووالانت و ترکیب‌های آلی
    هیدروژن از سبک ترین گازها است و می‌تواند با بیشتر عنصرها وارد واکنش شود در حالی که در حالت مولکولی، H۲ در شرایط استاندارد چندان واکنش پذیر نیست. هیدروژن الکترونگاتیوی ۲٫۲ دارد و می‌تواند با عنصرهایی که الکترونگاتیوی بیشتری دارند مانند هالوژن‌ها (مانند F، Ca، Br و I) و یا اکسیژن وارد واکنش شود. در تمامی این واکنش‌ها هیدروژن بار مثبت به خود می‌گیرد. هیدروژن در ترکیب با فلوئور، اکسیژن یا نیتروژن پیوندی غیرکووالانسی با توانمندی میانگین به نام پیوند هیدروژنی برقرار می‌کند. این پیوند در پایداری بسیاری از مولکول‌های زیستی نقش اساسی دارد. همچنین هیدروژن این توان را دارد که با عنصرهایی با الکترونگاتیوی کمتر مانند فلزها و شبه‌فلزها وارد واکنش شود. در این صورت هیدروژن بار منفی به خود می‌گیرد. این گونه ترکیب‌ها بیشتر با نام هیدرید شناخته می‌شوند.
    هیدروژن می‌تواند رشته‌های ترکیب‌های گسترده‌ای را با کربن پدید آورد. این ترکیب‌ها، هیدروکربن نام دارند. بیش از این، رشته ترکیب‌های هیدروژن با ناجوراتم‌ها هم وجود دارد که از هیدروکربن‌ها هم گسترده تر است و به دلیل ارتباطی که میان آن‌ها و اندام‌های زنده وجود دارد به آن‌ها ترکیب‌های آلی گفته می‌شود. و دانش بررسی ویژگی‌های چنین ترکیب‌هایی شیمی آلی نام دارد. و چنان که این بررسی در زمینهٔ ساز و کار اندامک‌های زنده باشد زیست‌شیمی خوانده می‌شود. البته تعریف دیگری هم وجود دارد: برخی بر این باور اند که هر ترکیبی که کربن داشته باشد ترکیب آلی نام دارد، هرچند، بیشتر این ترکیب‌های کربنی دارای هیدروژن اند.امروزه میلیون‌ها هیدروکربن در جهان شناخته شده‌است که برای ساخت بسیاری از آن‌ها از فرایندهای پیچیده‌ای بهره برده شده‌است.
    هیدریدها
    بیشتر ترکیب‌های هیدروژن، هیدرید نام دارند. عبارت هیدرید نشان می‌دهد که در آن ترکیب اتم هیدروژن بار منفی یا آنیون به خود گرفته و به صورت -H نمایش داده می‌شود. این حالت زمانی پیش می‌آید که هیدروژن با عنصرهایی که دوست دارند الکترون از دست دهند، ترکیب شود. این مطلب نخستین بار توسط گیلبرت لوویس در سال ۱۹۱۶ برای هیدریدهای گروه یک و دو پیشنهاد شد؛ پس از آن مورئر، در سال ۱۹۲۰ با کمک الکترولیز لیتیم هیدرید مذاب، درستی این پدیده را نشان داد. همچنین مقدار هیدروژن در آنُد با کمک معادلات استوکیومتری قابل شمارش بود. برای هیدرید عنصرهایی غیر از فلزهای گروه یک و دو، با در نظر گرفتن الکترون‌دوستی پایین هیدروژن، وضعیت کمی متفاوت است. همچنین ترکیب BeH۲ در گروه دو، یک پلیمری و استثنا است. در لیتیم آلومینیوم هیدرید، آنیون AlH−
    ۴ مرکزهای هیدریدی را با خود می‌برد در حالی که به سختی با Al(III) در پیوند اند.
    هیدریدها تقریبا با همهٔ عنصرهای گروه اصلی ساخته می‌شوند ولی شمار و آمیزش آن‌ها متفاوت است. برای نمونه بیش از ۱۰۰ هیدرید بور دوتایی شناخته شده‌است درحالی که تنها یک هیدرید آلومینیم دوتایی داریمو هیدرید ایندیم دوتایی هنوز شناخته نشده‌است هرچند که ترکیب‌های پیچیده تر وجود دارند.
    در شیمی معدنی، هیدریدها به عنوان یک پل لیگاندی یا لیگاند واسطه هم کاربرد دارند؛ به این ترتیب که میان دو مرکز فلزی در ترکیب‌های کمپلس ارتباط برقرار می‌کنند. این کاربرد هیبرید بیشتر در میان عنصرهای گروه ۱۳ بویژه در هیدریدهای بور، کمپلکس‌های آلومینیم و کربوران‌های خوشه دار دیده می‌شود.
    پروتون‌ها و اسیدها
    آگاهی بیشتر در واکنش اسید و باز
    هیدروژن با اکسید شدن الکترون خود را از دست می‌دهد درنتیجه H+ بدست می‌آید که تنها دارای یک هسته‌است که خود آن هسته تنها یک پروتون دارد. به همین دلیل H+ را پروتون نیز می‌نامند. این ویژگی در بحث واکنش‌های اسیدها در خور توجه‌است. برپایهٔ نظریهٔ اسید و باز برونستد-لاری اسیدها دهندهٔ پروتون و قلیاها گیرندهٔ پروتون اند.
    پروتون یا H+ را نمی توان به صورت تکی در یک محلول یا بلور یونی پیدا کرد، این به دلیل ربایش بسیار بالای آن به الکترون اتم‌ها یا مولکول‌های دیگر است. مگر در دماهای بسیار بالای مرتبط با حالت پلاسما. چنین پروتون‌هایی را نمی توان از ابر الکترونی اتم یا مولکول جدا کرد بلکه چسبیده به آن‌ها باقی می‌ماند. البته گاهی از عبارت «پروتون» برای اشاره به هیدروژن با بار مثبت یا کاتیون که در پیوند با دیگر مواد است هم استفاده می‌شود.
    ایزوتوپ‌ها
    پروتیوم، معمولی‌ترین ایزوتوپ هیدروژن فاقد نوترون است گرچه دو ایزوتوپ دیگر به نام دوتریوم دارای یک نوترون و تریتیوم رادیو اکتیو دارای دو نوترون، وجود دارند. دو ایزوتوپ پایدار هیدروژن پروتیوم(H-1) و دیتریوم(D، H-۲) هستند. دیتریوم شامل ۰٫۰۱۸۴-۰٫۰۰۸۲٪ درصد کل هیدروژن است (آیوپاک)؛ نسبتهای دیتریوم به پروتیوم با توجه به استاندارد مرجع آب VSMOW اعلام می‌گردد. تریتیوم(T یا H-3)، یک ایزوتوپ پرتوزا (رادیواکتیو) دارای یک پرتون و دو نوترون است. هیدروژن تنها عنصری است که ایزوتوپ‌های آن اسمی مختلفی دارند. بیشتر ایزوتوپ‌هایی که در طبیعت یافت می‌شوند پایدارند. در واقع تعداد پروتون‌ها و نوترون‌های هستهٔ اتم‌های آن‌ها با گذشت زمان تغییر نمی‌کند. این در حالی است که برخی ایزوتوپ‌ها هسته‌هایی ناپایدار دارند به این معنا که تعداد معینی پروتون دارد تجمع این تعداد ذره با بار مثبت مجموعه‌ای ناپایدار به وجود می‌آورد بنابراین به تعدادی نوترون هم نیاز است تا گردهمایی این تعداد پروتون را امکان پذیر سازد و هسته‌ای پایدار ایجاد کند. اگر هسته‌ای بیش از اندازه نوترون داشته باشد (بیش از ۱/۵ برابر تعداد پروتون‌ها) باز هم ناپایدار می‌شود و زمینه برای تغییر در آن فراهم می‌آید
    پیشینه

    شناسایی هیدروژن و دست‌آوردهای پس از آن
    در سال ۱۶۷۱، رابرت بویل دریافت و توضیح داد که از واکنش میان آهن و یک اسید رقیق باعث تولید گاز هیدروژن می‌شود. پس از او در سال ۱۷۶۶ هنری کاوندیش نخستین کسی بود که گاز هیدروژن را به عنوان یک مادهٔ جداگانه شناخت. ماده‌ای که نتیجهٔ واکنش شیمیایی میان فلز و اسید بوده و البته آتشگیر نیز بوده‌است برای همین وی نام «هوای آتشگیر» را بر آن نهاد. او گمان برد «هوای آتشگیر» در حقیقت همان مادهٔ افسانه‌ای «آتش‌دوست» یا phlogiston است. آزمایش‌های پس از آن در سال ۱۷۸۱ نشان داد که از سوختن این گاز، آب پدید می‌آید. کاوندیش به عنوان کسی که برای نخستین بار هیدروژن را به عنوان یک عنصر دانست، شناخته می‌شود. در سال ۱۷۸۳ لاوازیه و لاپلاس هنگامی که یافته‌های کاوندیش را آزمودند و دیدند که از سوختن این گاز، آب پدید می‌آید به پیشنهاد لاوازیه نام هیدروژن را برای آن برگزیدند. هیدروژن به معنی سازندهٔ آب یا آبزا، از واژهٔ یونانی ὕδρω یا hydro به معنی «آب» و γενῆς یا genes به معنی «سازنده» ساخته شده‌است.
    لاوازیه در آزمایش‌های سرشناس خود دربارهٔ بقای ماده، از واکنش میان بخار آب با فلز آهنی که در آتش به شدت داغ و دچار تابش شده بود، به تولید هیدروژن دست یافت. اکسید کردن آهن در یک فرایند ب

  • مطالب مرتبط
  • ترکیب فوق خطرناک دی هیدروژن منو اکسید
  • طنز هیدروژنی
  • نویسنده : علیرضا فرزادنیا بازدید : 37 تاريخ : يکشنبه 13 مرداد 1392 ساعت: 20:15
    برچسب‌ها :