اسپکتروفتومتری

ساخت وبلاگ

مقدمه:
اسپکتروفتومتری:

در روشهای اسپکتروفتومتری (طیف سنجی)، تاثیر محلولها بر امواج الکترومغناطیسی مورد مطالعه قرار میگیرد. محدوده طیف الکترومغناطیس میتواند از اشعه ماوراء بنفش تا امواج رادیویی باشد.
مقدار نور جذب شده توسط محلول، تابع قوانین Beer وLambert است و از رابطه A=e lc محاسبه می شود. طبق قانون بیر، هر گاه یک اشعه نور تک رنگ از درون محلولی با رنگ مکمل عبور کند، مقدار نور جذب شده توسط محلول، با غلظت آن نسبت مستقیم دارد. طبق قانون لامبرت، مقدار نور جذب شده توسط لایه های مختلف محلول همواره ثابت بوده و با شدت نور تابیده شده بستگی ندارد. بر اساس قوانین بیر و لامبرت رابطه بین غلظت محلول و نور جذب شده به صورت خطی است و معمولا در محدوده ای که جذب با غلظت رابطه خطی دارد، تعیین غلظت مواد انجام می شود.اگر غلظت نمونه و استاندارد به هم نزدیک باشد و غلظتها هم در محدوده خطی باشند، می توان با استفاده از تناسب محاسبات را انجام داد.
دستگاه اسپکتروفتومتر از دو بخش اسپکترومتر و فتومتر تشکیل شده است. اسپکترومتر بخشی است که نور منوکروم را ایجاد کرده و دارای منبع نور، عدسی، شکافها، منوکروماتور (صافی یا منشور) می باشد. بخش فتومتر دارای اسباب سنجش نور است.


مقدمه:
اسپکتروفتومتری:

در روشهای اسپکتروفتومتری (طیف سنجی)، تاثیر محلولها بر امواج الکترومغناطیسی مورد مطالعه قرار میگیرد. محدوده طیف الکترومغناطیس میتواند از اشعه ماوراء بنفش تا امواج رادیویی باشد.
مقدار نور جذب شده توسط محلول، تابع قوانین Beer وLambert است و از رابطه A=e lc محاسبه می شود. طبق قانون بیر، هر گاه یک اشعه نور تک رنگ از درون محلولی با رنگ مکمل عبور کند، مقدار نور جذب شده توسط محلول، با غلظت آن نسبت مستقیم دارد. طبق قانون لامبرت، مقدار نور جذب شده توسط لایه های مختلف محلول همواره ثابت بوده و با شدت نور تابیده شده بستگی ندارد. بر اساس قوانین بیر و لامبرت رابطه بین غلظت محلول و نور جذب شده به صورت خطی است و معمولا در محدوده ای که جذب با غلظت رابطه خطی دارد، تعیین غلظت مواد انجام می شود.اگر غلظت نمونه و استاندارد به هم نزدیک باشد و غلظتها هم در محدوده خطی باشند، می توان با استفاده از تناسب محاسبات را انجام داد.
دستگاه اسپکتروفتومتر از دو بخش اسپکترومتر و فتومتر تشکیل شده است. اسپکترومتر بخشی است که نور منوکروم را ایجاد کرده و دارای منبع نور، عدسی، شکافها، منوکروماتور (صافی یا منشور) می باشد. بخش فتومتر دارای اسباب سنجش نور است.

با اسپکتروفوتومترآشنا شویم (سفری با سرعت نوربین آینه ها):
اسپکتروفوتومتر یا طیف سنج، دستگاهی است که شدت نور را به صورت تابعی از طول موج اندازه‌گیری می کند. این کار با انکسار پرتو نور به طیف طول موج ها و آشکارسازی شدت ها با دستگاه بار دار و نمایش نتایج به صورت گراف انجام می‌شود. در حقیقت این روش با استفاده از میزان جذب نور، تعیین غلظت می‌کند. این روش قابلیت اندازه گیری نمونه های فوق العاده کوچک را داشته لذا از آن برای تجزیه و تحلیل عناصر مولکول‌های‌DNA , RNA استفاده می‌شود.
نور از بسته های بسیار کوچکی به نام فوتون تشکیل شده است که انرژی هریک از آن‌ها به محض برخورد به یک الکترون منتقل می شود. تنها هنگامی انتقال رخ می دهد که انرژی فوتون ها برابر با انرژی مورد نیاز برای انتقال الکترون به لایه انرژی بعدی باشد. این پروسه که در آزمایش‌های محاسبه کیفیت و کمیت‌DNA موجود در محلول‌ها استفاده می شود، پایه طیف بینی جذبی را تشکیل می دهد. به طور کلی نور با طول موج و انرژی خاص به نمونه تابانده شده و مقدار مشخصی از انرژی آن جذب می شود. سپس با اندازه‌گیری انرژی رد شده از نمونه توسط یک فوتودتکتور، مقدار جذب تعیین می‌شود. ‌اسپکتروفوتومتر دستگاه پیچیده‌ای‌ است که شدت نور را به صورت تابعی از طول موج است اندازه‌گیری می کند. در این دستگاه نور توسط یک منبع نور تولید شده و پس از گذشتن از میان نمونه مورد نظر نور، به صورت طیفی منتشر می شود سپس به وسیله سنسورها آشکارسازی شده و به صورت نتایج قابل کاربردی ترجمه می‌شود. خروجی اسپکتروفوتومتر همیشه نموداری از شدت نور نسبت به طول موج است. داده‌هایی که برای تولید نمودار گردآوری شده، در جدولی از شدت نور و طول موج ذخیره می‌شود. مقدار گراف بیان کننده مقدار عبور یا مقدار جذب است. اسپکتروفوتومترهای امروزی دیجیتالی بوده و به وسیله میکروپروسسور کنترل می شوند.

اجزا اسپکتروفوتومتر:

چهار بخش اصلی در اسپکتروفوتومتر وجود دارد: منبع نور، نمونه، آشکارساز و مفسر. منبع نور می‌تواند نور مرئی، مادون قرمز یا ماوراء بنفش باشد. پس از منبع نور یک تک فام ساز (مونوکروماتور) وجود دارد تا نور تولید شده را فیلتر و توسط یک منشور یا توری پراش طول موج‌های خاصی را انتخاب کند. پس از گذشتن نور تولید شده از داخل نمونه و جذب بخشی از آن، پس از گذشتن از مجموعه ای از لنزها، شکاف‌ها، آینه‌ها و فیلترها به سنسور‌ها رسیده و پس از تفسیر شدن به صورت نموداری در خروجی قرار می گیرد.‌

قانون بیر-لامبرت:
وقتی یک دسته امواج تک رنگ نورانی را از یک محیط وارد یک محیط یکنواخت دیگر می شود قسمتی از آن منعکس و قسمتی از آن جذب محیط دوم شده و قسمتی دیگر از آن خارج می شود.
رابطه بین شدت نور تابش شده و نور خروجی در سال ۱۷۶۰ توسط لامبرت بدست آمد و بیر درسال ۱۷۶۲ درستی آن را درباره محلول ها بررسی نمود و نتیجه گرفت که این رابطه درمورد محلول ها نیز صادق است.
بر طبق قانون لامبرت افت نسبی شدت نور نسبت به ضخامت محیط جاذب نور، با شدت نور تابش شده متناسب است.

مسیر نور:
در حال حاضر دو منبع نور‌UV و‌VIS‌ برای اسپکتروفوتومتر وجود دارد. متداول ترین منبع نور برای تولید نور مرئی یک لامپ هالوژن تنگستن با طول موجی بین ۲۰۰ و ۳۴۰ نانومتر است. چنانکه در شکل ۱ دیده می شود نور از میان نمونه عبور کرده و از طریق شکافی وارد اسپکتروفوتومتر می‌شود.

شکاف نازک باعث پراکنده شدن نور و پخش به خارج می‌شود. از آنجا که دستگاه‌ها تنها یک باریکه نور دارند، در بیشتر موارد طول موج پرتو خوانده شده از نمونه دستخوش تغییر واقع می شود و برای اصلاح این امر از آینه‌های مقعر استفاده می شود. بدین ترتیب که نور توسط آینه ای مقعر به شبکه پراکننده کننده منعکس شده و دوباره به آینه مقعر دیگری منعکس می‌شود. این آینه کانونی نور را به سمت آشکارساز متمرکز می‌کند .‌
آینه‌هایی که امروزه مورد استفاده قرار می‌گیرند به سه دسته تقسیم می شوند. اولین دسته از شیشه ساخته شده و برای خواندن جذب در طول موج های‌UV بیشتر از ۳۴۰ نانومتر استفاده می شود. دسته دوم از سیلیس گداخته یا کوارتز ساخته شده و به علت شفافیت بسیار زیاد می‌تواند در اندازه‌گیری جذب طیف‌های ( UV-VIS 200 تا ۸۰۰ نانومتر) استفاده شود و آخرین نوع آینه های یک بار مصرف است که انواع مختلفی دارد. یک نمونه از آن از پلی متا اکریلیت بوده و تنها برای اندازه‌گیری طول موج های ۲۸۰ تا ۸۰۰ نانومتر استفاده می شود.‌
طبق آخرین تحقیقات آزمایشگاهی، منبع‌UV می‌تواند لامپ هیدروژنی فشار بالا یا لامپ دوتریوم باشد. هنگامی که میزان جذب در طیف‌UV اندازه‌گیری می شود، لامپ دیگر خاموش می شود و زمانی که اندازه‌گیری جذب در نور مرئی انجام می شود بر عکس این مساله اتفاق می افتد که دلیل این امر جلوگیری از تداخل طول موج های غیر ضروری در نور منتشر شده از نمونه است. ‌

آشکار ساز:
در انتهای مسیر نور ، آشکار ساز وجود دارد که وظیفه آن اندازه‌گیری شدت نور تابیده شده از آینه‌ها و انتقال اطلاعات به کنتوری است که آن‌ها را ثبت و مقدار را بر روی‌LCD به اپراتور نمایش دهد. امروزه دو نوع آشکارساز در اسپکتروفوتومترهای‌UV/VIS متداول است: فوتوتیوب و فوتومالتی پلایر تیوب. فوتوتیوب یا فوتوسل با تولید یک جریان الکتریکی عمل می کند. وقتی یک فوتون به کاتد سلول ضربه بزند، الکترون به سمت آند رانده شده و بدین ترتیب جریان الکترونی به ‌وجود می آید که مقدار آن به میزان انرژی فوتون بستگی دارد. تیوب فوتومالتی پلایر که بسیار حساس تر است به قانون اثر فوتوالکتریک پلانک استناد دارد. فوتون ها به سطح حساس تیوب ضربه زده و الکترون های اولیه را به حرکت در می آورد ، با برخورد این الکترون ها با سطح بعدی الکترون های ثانویه نیز رها می شوند. این روال به همین ترتیب ادامه پیدا کرده تا به آند برسند و جریان الکتریکی راه بیفتد. جریان تولید شده چندین بار تقویت شده تا بتوان انرژی بسیار پایین یک فوتون را آشکارسازی و ثبت کرد.‌

دستگاه بار دار(CCD):
‌آشکارساز در بیشتر اسپکتروفوتومترها یک دستگاه بار دار خطی‌‌(CCD) است.‌CCD نوعی سنسور است که نور را حس می‌کند و از مدارهای مجتمعی مشتمل بر جفت خازن های کوپل شده حساس به نور تشکیل شده است. این خازن ها شدت نور دریافتی را حس کرده و آن‌را به سیگنال الکتریکی تبدیل می‌کند. آشکارساز خطی‌CCD مشابه دامنه طول موج‌ها در اسپکتروفوتومتر دستی است. هر پیکسل در‌CCD نشان دهنده‌ طول موج خاصی از نور است و فوتون های جذب شده بیشتر، سیگنال‌های الکتریکی بیشتری تولید می کنند. بنابراین سیگنال‌های الکتریکی خروجی CCD در هر پیکسل، برابر نسبت شدت نور در طول موج متناظر است.‌

مفسر:
اسپکتروفوتومترها می‌توانند خروجی خود را به صورت های مختلف نمایش دهند، اما متداول تر است که آن را به کامپیوتر وصل کرده و برای آنالیز داده ها از نرم افزار استفاده کنند و آن ‌را به صورت قابل کاربردی مانند نموداری از مقدار عبور یا مقدار جذب بر حسب طول موج نمایش می دهند.

انواع دیگر اسپکتروفوتومتر:‌

تک پرتو و دو پرتو:
اسپکتروفوتومترها به دو دسته تقسیم می شوند: تک پرتو و دو پرتو. اسپکتروفوتومترهای تک پرتو اولین نسل اسپکتروفوتومترها بوده و تمام نور از بین نمونه عبور می کنند. در این نوع برای اندازه‌گیری شدت نور تابشی باید به این نکته توجه داشت. این اسپکتروفوتومترها ارزان تر هستند چرا که بخش های کمتری داشته و سیستم آن‌ها پیچیدگی کمتری دارند. نسل جدیدتر اسپکتروفوتومترها نوع دو پرتو است. در این نوع نور قبل از اینکه به نمونه برسد به دو پرتو مجزا تفکیک می شود که این مسئله یک امتیاز تلقی می‌شود زیرا خواندن منبع و نمونه به صورت همزمان انجام می‌شود. در برخی از اسپکتروفوتومترهای دو پرتوی، دو آشکارساز وجود دارد بدین ترتیب امکان اندازه‌گیری همزمان پرتوهای نمونه و مرجع فراهم می شود. سایر اسپکتروفوتومترهای دو پرتوی که تنها یک آشکارساز دارند از برشگر پرتو استفاده می کنندکه این وسیله در هر لحظه یک پرتو را سد کرده و آشکارساز اندازه‌گیری پرتو نمونه و مرجع را به صورت یک در میان انجام می دهد.‌

نور مرئی:
محدوده نور مرئی حدود ۷۰۰-۴۰۰ نانومتر است. اسپکتروفوتومترهای ناحیه مرئی دقت و صحت متغیری دارند. برخی از آن‌ها آشکارساز‌CCD با پیکسل‌های کافی برای قرائت هر‌‌nm10 را دارند، درحالیکه برخی دیگر می‌توانند در هر نانومتر چندین قرائت انجام دهند. این اسپکتروفوتومترها می‌توانند از منابع نور سیمابی، هالوژن،LED یا ترکیبی از این منابع مثل LED تقویت شده با رشته‌های تنگستن استفاده کنند. ‌

نور ماوراء بنفش:
اسپکتروفوتومترUV ‌علاوه بر اینکه در طیف سنجی مایعات بسیار متداول است، برای گازها و همچنین جامدات نیز استفاده می شود. نمونه را در محفظه مستطیلی مخصوص که معمولا یک سانتی متر پهنا دارد قرار می دهند. این محفظه که کاوت‌‌(cuvvette) نامیده می شود می‌تواند شکل پلاستیک، شیشه یا کوارتز داشته باشد. پلاستیک و شیشه‌، UV را جذب می کنند از اینرو تنها می‌توان آن‌ها را برای اسپکتروفوتومتری نور مرئی استفاده کرد.‌

نور مادون قرمز:
اسپکتروفوتومتر مادون قرمز در شناسایی مولکولی و ارتعاشات وابسته به ساختار آن استفاده می شود.‌‌ ‌ساختارهای شیمیایی متفاوت، به دلیل تفاوت در انرژی های مربوط به هر طول موج، راه‌های مختلفی در پاسخ به طول موج های مختلف دارند. به عنوان مثال مادون قرمز‌های برد متوسط، تمایل به لرزش دورانی دارد، درحالیکه مادون قرمز نزدیک (با انرژی بالاتر) تمایل به لرزش هارمونیک مولکولی مانند جنبش دارد.‌
در اسپکتروفوتومترهای‌IR متداول یک پرتو مادون قرمز مستقیما به نمونه می تابد و تمام طول موج‌های طیف نسبت به پرتو مرجع اندازه‌گیری می‌شود. به منظور تولید طیفی با کیفیت بالا، باید پهنای طیف ورودی به آرامی اسکن شود. اسپکتروسکوپی‌IR با روش بسط تبدیل فوریه اصلاح می شود. قلب اسپکتروفوتومترهای IR تداخل سنج میشلسون است که در شکل نشان داده شده است.

نور تابش شده از منبع‌IR به سمت سلول‌های نمونه هدایت می شود. نیمی از پرتو تابشی از آینه ثابت باز تابیده شده و نیم دیگر آن از آینه ای که مرتبا در فاصله ای حدود دو و نیم میکرومتر حرکت می کند منعکس می‌شود. هنگامی که دوباره دو پرتو در آشکارساز با هم ترکیب می شوند و تداخل به وجود می آید، حدود دو ثانیه یک اسکن از فاصله ورودی گرفته شده و در کامپیوتر ذخیره می شود. به همین ترتیب چندین اسکن دیگر نیز به طور همزمان به آن اضافه می شود. با توجه به نوسانات و ارتعاشات حرارتی در آزمایشگاه بدیهی است که این امر نا ممکن است. پس به منظور حل این مشکل از لیزر هلیم – نئون برای تاباندن به تداخل سنج میشلسون استفاده می شود و تداخل لیزر به عنوان فرکانس مرجع به کار گرفته می شود. کارائی‌FTIR از دستگاه‌های معمولی بیشتر است که می‌توان تنها با مقدار کمی از نمونه و در زمانی کوتاه به طیفی عالی دست یافت.
استفاده از اسپکتروفوتومتر:

اسپکتروفوتومترها مستقیما برای اندازه‌گیری شدت نور در طول موج های مختلف استفاده می شود و می‌تواند نماینده درصد نور تابشی مخابره شده یا جذب شده باشد. با استفاده از این اطلاعات و مقایسه آن با دانسیته‌ها و داده‌های به دست آمده می‌توان اسپکتروسکوپی را به عنوان یک ابزار استفاده کرد. مقایسه طیف‌ها برای تعیین غلظت جسم حل شده موجود در حلال مثال خوبی است. بدین ترتیب که با ثبت نور ارسال و دریافت شده در طول موجی خاص و بررسی طول موج جذب شده توسط حلال می‌توان به غلظت آن پی برد. سپس آنالیز محلول با غلظت ناشناخته، با داده های معلوم مقایسه شده و به کمک تناسب غلظت محاسبه می‌شود. این عمل برای محلول‌هایی که در آن‌ها چندین نوع حلال وجود دارد نیز قابل استفاده است والبته به دقت بیشتری در آنالیز طول موج ها احتیاج دارد. با توجه به حساسیت اسپکتروفوتومتر‌FTIR مناسب ترین و رضایت بخش ترین روش آماده سازی نمونه، تبخیر ساده محلول نمونه در صفحه ای از نمک ‌‌ KBr و دست یافتن به طیفهای فیلم نازک باقی مانده است. این روش طیفی بسیار خوب با خط مبداء مسطح به ‌وجود میآورد.‌
شکل زیرساختار اپتیک دستگاه اسپکتروفوتومتر را نشان میدهد:

اسپکتروفوتومترهایی که منبع نور ندارند اما طیف‌های مبنی بر نور وارده را تولید می کنند می‌توانند با روشی مشابه برای تعیین منبع نور استفاده شوند. می‌توان منحنی طیف‌های به دست آمده از منبع نوری نامعلوم (یا ترکیبی از منابع) را با اطلاعات منحنی های منبع نور مشخصی مقایسه کرد و منبع نور ناشناخته را شناسایی کرد.‌
از دیگر کاربردهای اسپکتروفوتومتر می‌توان به تعیین ثابت موازنه واکنش های یونی که در محلول‌های آبی انجام می شود اشاره کرد. در ابتدا طیف‌های محلولی که تنها شامل یک واکنش دهنده است اندازه‌گیری می شود. سپس دیگر واکنش دهنده‌ها به آن اضافه می شود و پس از هر بار افزایش، طیف سنجی صورت می گیرد. این روش در صورتی به صورت مطلوب کار می کند که طول موج جذب شده توسط محصول مقداری مشخص باشد. از آنجا‌که بیشتر محصولات از اضافه کردن چندین واکنشگر به دست میآیند، زمانی که محلول اشباع شده و واکنش موازنه می شود نورهای بیشتری جذب شده و افزایش نور جذب شده برابر ثابت موازنه است. ‌
در هنگام نصب دستگاه اسپکتروفوتومتر باید به نکات زیر توجه داشت:
۱- اسپکتروفوتومتر باید روی سطحی سفت و‌ در محیطی خشک و تمیز نصب شود.‌
۲- به جهت امکان جریان هوا در اطراف اسپکتروفوتومتر ، باید بین دستگاه و دیوارهای اطراف ۵۰ میلیمتر فاصله باشد.‌
۳- کابل برق دستگاه به پریز گراند شده با ولتاژ مناسب وصل شود.‌
۴- پس از اتصال آداپتور‌AC به برق، خروجی آن باید به گونه ای به دستگاه وصل شود که منبع ذخیره‌DC در مسیر آن قرار گیرد.‌
۵- در صورتی که خود دستگاه فاقد پرینتر است، باید از طریق پورت مخصوص آن‌را به پرینتر وصل کرد.‌
۶- پس از روشن کردن دستگاه مدتی صبر کرده تا دستگاه گرم شده و به پایداری حرارتی و الکترونیکی برسد.‌


http://shimishop.ir/13418131481.png

گزارش کار اندازه گيري دبي به كمك وسايل اندازه گيري - جمعه سیزدهم مرداد 1391
کلمه شیمی یعنی چی؟؟ - جمعه سیزدهم مرداد 1391
زندگینامه آلبرت انیشتین+ عکس رنگی! - جمعه سیزدهم مرداد 1391
معرفی سایتی در زمینه مواد شیمیایی - جمعه سیزدهم مرداد 1391
معرفی کامل رشته شیمی محض و کاربردی - جمعه سیزدهم مرداد 1391
دانلود کتاب تشریح مسائل مکانیک سیالات استریتر - پنجشنبه دوازدهم مرداد 1391
راهنمای حفظ کردن آسان جدول تناوبی - سه شنبه دهم مرداد 1391
دانلود و آموزش نرم افزار Chem 4D Demo - سه شنبه دهم مرداد 1391

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 259 تاريخ : پنجشنبه 27 مهر 1391 ساعت: 14:18

نظر سنجی

سایت صنایع شیمیایی...

خبرنامه